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A B S T R A C T   

Purpose: The human brain is characterized by interacting large-scale functional networks fueled by glucose 
metabolism. Since former studies could not sufficiently clarify how these functional connections shape glucose 
metabolism, we aimed to provide a neurophysiologically-based approach. 
Methods: 51 healthy volunteers underwent simultaneous PET/MRI to obtain BOLD functional connectivity and 
[18F]FDG glucose metabolism. These multimodal imaging proxies of fMRI and PET were combined in a whole- 
brain extension of metabolic connectivity mapping. Specifically, functional connectivity of all brain regions were 
used as input to explain glucose metabolism of a given target region. This enabled the modeling of postsynaptic 
energy demands by incoming signals from distinct brain regions. 
Results: Functional connectivity input explained a substantial part of metabolic demands but with pronounced 
regional variations (34 - 76%). During cognitive task performance this multimodal association revealed a shift to 
higher network integration compared to resting state. In healthy aging, a dedifferentiation (decreased segre-
gated/modular structure of the brain) of brain networks during rest was observed. Furthermore, by including 
data from mRNA maps, [11C]UCB-J synaptic density and aerobic glycolysis (oxygen-to-glucose index from PET 
data), we show that whole-brain functional input reflects non-oxidative, on-demand metabolism of synaptic 
signaling. The metabolically-derived directionality of functional inputs further marked them as top-down pre-
dictions. In addition, the approach uncovered formerly hidden networks with superior efficiency through 
metabolically informed network partitioning. 
Conclusions: Applying multimodal imaging, we decipher a crucial part of the metabolic and neurophysiological 
basis of functional connections in the brain as interregional on-demand synaptic signaling fueled by anaerobic 
metabolism. The observed task- and age-related effects indicate promising future applications to characterize 
human brain function and clinical alterations.   

1. Introduction 

Human brain function is organized by the coordinated activity of 
different brain regions, composing large-scale functional networks. 
These may flexibly reconfigure between rest and task states (Hearne 
et al., 2017), while this ability is altered with aging (Wig, 2017). 

Network interactions are primarily characterized by functional con-
nectivity (FC), correlating the time course of the hemodynamic response 
of different brain regions as obtained via BOLD fMRI (Yeo et al., 2011). 
Despite the advancement of our understanding of human brain function 
through BOLD imaging, its underlying physiology marks it as a mixed, 
semiquantitative signal of cerebrovascular sources and neuronal activity 
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(Hillman, 2014; Logothetis, 2008). Recent multimodal approaches with 
simultaneous [18F]FDG PET acquisition of comparable temporal reso-
lution (so-called functional PET (fPET)) (Hahn et al., 2018, 2016; 
Jamadar et al., 2019; Rischka et al., 2018; Villien et al., 2014) enable an 
indirect dynamic assessment of neuronal activation via the cerebral 
metabolic rate of glucose (CMRGlu), capturing a fully quantitative 
molecular marker of primarily synaptic activity (Magistretti and Alla-
man, 2015; Sokoloff, 1981; Sokoloff et al., 1977), which is largely un-
affected by blood flow (Leybaert, 2005). 

Several previous studies already investigated the relationship be-
tween FC and CMRGlu, overall indicating a relationship between the 
number or strength of functional connections of a region and its meta-
bolic demands. However, these approaches were limited by the assess-
ment of regional connectivity surrogates (such as ReHo, fALFF, or 
connectivity density/strength) and/or subsequent associations across 
the entire brain (Aiello et al., 2015; Nugent et al., 2015; Palombit et al., 
2022; Shokri-Kojori et al., 2019; Tomasi et al., 2013, 2017). Even a 
sophisticated combination of 50 BOLD- and FC-derived features only 
explained up to 40% of the CMRGlu variance (Volpi et al., 2021). Thus, 
it appears that the above-mentioned regional summary metrics of FC do 
not sufficiently reflect the underlying metabolic demands, potentially 
due to the loss of information that is inherent to averaging within a 
region (mathematically, a 1×k summary vector is derived from a k×k FC 
matrix to enable correlation with a 1×k CMRGlu vector). In contrast, 
few studies examined associations between a region’s metabolism and 
FC with specific remote brain regions (Riedl et al., 2014). Such a strategy 
may be more informative under the hypothesis that FC input leads to 
increased glucose metabolism in a certain brain region. 

This approach has been elegantly formulated in the framework of 
metabolic connectivity mapping (MCM) (Riedl et al., 2016), which rests 
upon physiological observations on the interaction of the BOLD signal 
and glucose metabolism. These are both driven by glutamate release 
upon neuronal activation, which in turn leads to increases in cerebral 
blood flow through neurovascular coupling (Attwell et al., 2010; Mishra 
et al., 2016) and glucose uptake in neurons (Lundgaard et al., 2015) and 
astrocytes (Zimmer et al., 2017). The fact that in gray matter, about 70% 
of energy is consumed postsynaptically (Attwell and Laughlin, 2001; 
Harris et al., 2012; Mergenthaler et al., 2013; Yu et al., 2018) implies 
that incoming signals from other brain regions play an essential role in 
the resulting metabolism of a target area. This also enables to identify 
the target region and thus infer the directionality of a connection. Spe-
cifically, if the evoked connectivity pattern in the target region is 
causally related to the seed region, this will be reflected in a spatially 
correlated CMRGlu pattern in the target (Hahn et al., 2020; Riedl et al., 
2016). This spatial correlation between CMRGlu and FC patterns as 
calculated by MCM has already proven feasible in characterizing hier-
archical interactions of the brain during rest and task performance 
(Hahn et al., 2020; Riedl et al., 2016) and their adaptations after 
learning a visuospatial task (Klug et al., 2022). It has also been validated 
with dynamic causal modeling (DCM) (Hahn et al., 2020). More spe-
cifically, Bayesian model comparison within the framework of DCM 
indicated that the most plausible model of directed connectivity be-
tween task-related brain regions converged with the model identified 
via MCM. Using family-wise inference to test each connection’s rele-
vance individually proved this result’s specificity (Hahn et al., 2020). 

In this work, we leverage MCM from pairwise regional interactions to 
a whole-brain model, aiming to identify the proportion of BOLD FC that 
represents postsynaptic metabolic demands. We thereby investigate 
each brain region’s FC as a potential input signal to a given target region 
and compute the maximum amount of explained CMRGlu independently 
for each region and individual. We investigated potential differences 
between rest and task states as well as between young and elderly 
subjects. Following recent studies showing differences in this association 
(Palombit et al., 2022; Volpi et al., 2021), we expect region- and 
network-specific variations in the ability of FC to predict CMRGlu. 
Focusing on the prominent role of synaptic processes in brain energy 

demands, we hypothesize that the associations between FC and CMRGlu 
are reflected in the corresponding gene expression patterns, synaptic 
density as well as aerobic glycolysis (AG). AG is a proxy of non-oxidative 
energy demands, which is related to synaptic plasticity (amongst others) 
(Goyal et al., 2014) and changes its pattern with aging (Goyal et al., 
2017). Throughout our work, we aim to clarify the interrelation of two 
of the most prominent noninvasive proxies of neuronal activation in the 
human brain, namely BOLD fMRI and [18F]FDG PET. 

2. Material and methods 

This work combined [18F]FDG fPET and blood-oxygen level depen-
dent (BOLD) fMRI data from 51 healthy participants. The two imaging 
modalities were acquired simultaneously at resting state and during the 
performance of a cognitive task (the video game Tetris®), which re-
quires rapid visuospatial processing and motor coordination (Hahn 
et al., 2020; Klug et al., 2022). 

The obtained glucose metabolism (CMRGlu) and functional con-
nectivity (FC) were modeled in the framework of metabolic connectivity 
mapping (MCM, see above) (Hahn et al., 2020; Klug et al., 2022; Riedl 
et al., 2016). We extended the MCM framework by computing spatial 
correlations not only for FC with a single brain region but for FC patterns 
elicited in the target region by the entire brain while controlling for 
collinearity between different FC inputs as well as randomly explained 
variance in CMRGlu (Fig. 1). This enabled us to assess for each partici-
pant and brain region the maximum amount of CMRGlu explained by 
FC. To relate these observations with the underlying neurophysiological 
processes, the resulting spatial distribution of explained CMRGlu was 
compared to that of mRNA expressions (Diez and Sepulcre, 2018) as well 
as synaptic density obtained from [11C]UCB-J PET (Rossano et al., 2020) 
and the oxygen-to-glucose index (OGI) as a metric of aerobic glycolysis 
(Goyal et al., 2023). We further investigated alterations of explained 
metabolic demands during task performance and in healthy aging, the 
latter with data from the Alzheimer’s Disease Neuroimaging Initative 2 
(ADNI 2) cohort. This was followed by a detailed assessment of within 
and between network contributions to explain CMRGlu in the different 
conditions and cohorts. Finally, the additional value of incorporating 
metabolic information for the refinement of functional brain network 
organization was evaluated. 

For the young adult cohort, the experimental design, cognitive task, 
PET/MR data acquisition, blood sampling, and data preprocessing have 
been described in full detail in our previous work (Hahn et al., 2020; 
Klug et al., 2022). Hence, these aspects will only be covered briefly here. 
For the ADNI 2 cohort, all processing steps were identical if not specified 
otherwise. 

Data used in the preparation of this article were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni. 
loni.usc.edu). The ADNI was launched in 2003 as a public-private 
partnership, led by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial magnetic resonance 
imaging (MRI), positron emission tomography (PET), other biological 
markers, and clinical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive impairment (MCI) 
and early Alzheimer’s disease (AD). 

2.1. Experimental design 

Young adult participants underwent a simultaneous PET/MRI scan 
while performing a cognitive task (the video game Tetris®). First, 
structural (8 min) and BOLD fMRI (6 min) were acquired at the resting 
state. This was followed by fPET (52 min) using the radiotracer [18F] 
FDG. After an initial period of rest (8 min), the cognitive task was per-
formed in two levels of difficulty (2 easy and 2 hard conditions in ran-
domized order, 6 min continuous performance each, 5 min rest after 
each task). During the task, BOLD fMRI was also recorded. fPET data was 
used for the quantification of CMRGlu, and BOLD fMRI served for the 
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computation of functional connectivity. For all periods of rest, partici-
pants had their eyes open, looked at a cross-hair, relaxed, and were 
instructed not to focus on anything in particular. 

Participants of the ADNI 2 cohort underwent separate sessions of 
structural and BOLD fMRI as well as [18F]FDG PET. 

2.2. Cognitive task 

We employed an adapted version of the video game Tetris® 
(https://github.com/jakesgordon/javascript-tetris, MIT license) as 
implemented in electron 1.3.14. Participants are required to build 
complete horizontal lines by aligning bricks, which descend from the top 
of the screen. The easy and hard levels of difficulty varied with respect to 
the speed of the descending bricks (1 and 3 lines per sec) and the number 
of incomplete lines already built at the bottom of the screen (2 and 6 
lines out of 20). A practice run was carried out right before the start of 
the scan (30 s for each level of difficulty) to enable participants to 
familiarize themselves with the control buttons. The paradigm is 
cognitively challenging and requires among other skills rapid visuo- 
spatial motor coordination, mental rotation and a high level of attention. 

Data of the ADNI 2 cohort were acquired at resting-state. 

2.3. Participants 

For this study, 53 healthy young adults were initially recruited, and 
51 were included (mean age ± sd = 23.3 ± 3.3 years, 24 female). Two 
participants were excluded due to failure of arterial blood sampling and 
excessive head motion during the BOLD acquisition (31.2% of frames 
required scrubbing, see rsfMRI preprocessing). Parts of these data were 
already included in our previous work (Godbersen et al., 2023; Hahn 
et al., 2020; Klug et al., 2022; Rischka et al., 2021). Recent studies with 
MCM showed robust estimation of directional connectivity with sample 
sizes of 22 and 24 subjects. As the current study sample is more than two 
times larger, a formal sample size estimation was omitted. An initial 
screening visit was conducted to ensure general health with a routine 

medical examination (blood tests, electrocardiogram, neurological 
testing, structured clinical interview for DSM-IV). Female participants 
completed a urine pregnancy test at the screening visit and before the 
PET/MRI scan. Exclusion criteria were current or previous somatic, 
neurological, or psychiatric disorders (within the last 12 months), sub-
stance abuse or psychopharmacological medication (6 months), current 
pregnancy or breastfeeding, contraindications for MRI examination, 
previous study-related radiation exposure (10 years) and experience 
with the video game Tetris® (3 years). After a detailed explanation of 
the study, all participants provided written informed consent, they were 
insured and reimbursed for participation. This study was approved by 
the Ethics Committee of the Medical University of Vienna (ethics num-
ber 1479/2015), and procedures were carried out according to the 
Declaration of Helsinki. The study was pre-registered at ClinicalTrials. 
gov (NCT03485066). 

The initial sample of the ADNI 2 cohort used in this work comprised 
47 healthy elderly subjects, as only for those three data sets were 
available (T1-weighted MRI, resting-state BOLD fMRI and [18F]FDG 
PET). Six subjects were excluded due to excessive head motion during 
the BOLD sequence (n = 4, more than 80% of frames required scrubbing, 
see rsfMRI preprocessing), different BOLD acquisition parameters (n =
1) and questionable quality of PET data (n = 1). Thus, the final sample of 
healthy elderly comprised 41 participants (76.6 ± 7.0 years, 21 female). 

2.4. PET/MR data acquisition 

Except for unsweetened water, participants fasted for at least 5.5 h 
before the start of the PET/MRI examination (Guedj et al., 2022). The 
radiotracer [18F]FDG was administered intravenously as a bolus (510 
kBq/kg for 1 min) plus constant infusion (40 kBq/kg for 51 min). The 
perfusion pump for the administration (Syramed µSP6000, Arcomed, 
Regensdorf, Switzerland) was kept in an MRI shield (UniQUE, 
Arcomed). MRI acquisition comprised a T1-weighted MPRAGE sequence 
(TE = 4.21 ms, TR = 2200 ms, TI = 900 ms, flip angle = 9◦, voxel size =
1 × 1 × 1 mm + 0.1 mm gap, 7.72 min) and BOLD fMRI for functional 

Fig. 1. Schematic algorithm overview, extending metabolic connectivity mapping (MCM) to a whole-brain model to explain glucose metabolism (CMRGlu) by functional 
connectivity (FC). A target region (magenta) is selected from an atlas with k regions. FC between the target and all other brain regions is then computed from the 
BOLD signal time series, yielding k-1 voxel-wise FC patterns in the target. To remove collinearity among the FC target patterns, principal component analysis (PCA) is 
applied. The obtained k-1 orthogonal principal components of FC patterns (PCFC, i.e., linear combinations of FC patterns) are spatially correlated with the corre-
sponding voxel-wise CMRGlu pattern of the target, resulting in k-1 observed MCM correlation values. Two different approaches were used to assess which corre-
lations are significantly higher than random. Approach a employs the elbow criterion (i.e., identifying the point with minimum distance to the origin), providing a 
computationally fast method to estimate the total amount of explained CMRGlu by PCFC in the target region as r2. In approach b, each FC target pattern was randomly 
permuted across voxels, subject to PCA, and again correlated with the PCFC patterns of the target. Repeating the permutation process j times results in (k-1)*j random 
MCM correlation values. For each permutation, the maximum value across all k-1 correlations was selected to build a random distribution. Using the top 5% of 
permuted MCM values as a cutoff has robust control for type-I statistical errors at p < 0.05 FWE-corrected (Genovese et al., 2002; Holmes et al., 1996). These 
procedures are repeated k times, assigning a different region as a target each time to obtain whole-brain estimates of explained CMRGlu. 
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connectivity using an EPI sequence (TE = 30 ms, TR = 2000 ms, flip 
angle = 90◦, voxel size = 2.5 × 2.5 × 2.5 mm + 0.825 mm gap, 6 min for 
each condition). 

For the ADNI 2 cohort, similar MRI raw data was available with a T1- 
weighted MPRAGE sequence (TE = 3.16 ms, TR = 6800 ms, TI = 0 ms, 
flip angle = 9◦, voxel size = 1.2 × 1 × 1 mm) and BOLD fMRI at resting 
state (TE = 30 ms, TR = 3000 ms, flip angle = 80◦, voxel size =
3.3125×3.3125×3.313 mm, 7 min). For this cohort, [18F]FDG was 
administered as a single bolus and raw data comprised 6 frames. 

2.5. Blood sampling 

Before the PET/MRI scan, blood glucose levels were determined as 
triplicate. During the scan, manual arterial samples were collected 
approx. at 3, 4, 5, 14, 25, 36 and 47 min after the start of the radiotracer 
administration. Whole-blood activity and, after centrifugation, plasma 
activity were measured in a gamma counter (Wizard2, Perkin Elmer). 
The arterial input function was obtained by multiplication of the 
average plasma-to-whole-blood ratio with whole-blood data. 

For ADNI 2 data, no blood samples were available. 

2.6. Quantification of glucose metabolism & determination of amyloid 
status 

fPET data were corrected for attenuation (Burgos et al., 2014) and 
reconstructed to frames of 30 s. Preprocessing was carried out in SPM12 
(https://www.fil.ion.ucl.ac.uk/spm/) with motion correction, spatial 
normalization to MNI space via the T1-weighted image (final voxel size 
2 × 2 × 2 mm), and smoothing with a Gaussian kernel of 8 mm. 
Non-gray matter voxels were excluded and a low-pass filter was applied. 
Baseline metabolism and task-specific effects were separated with the 
general linear model (GLM). Regressors included baseline metabolism 
(average gray matter signal excluding voxel active during the hard task), 
the two task conditions (linear ramp function), and head motion (the 
first principal component of motion parameters). The Patlak plot was 
used for absolute quantification of the net influx constant Ki, which was 
converted to the cerebral metabolic rate of glucose (CMRGlu). This 
yields separate maps of baseline and task-induced CMRGlu, which were 
then used for the computation of MCM (see below). 

For the ADNI 2 cohort, preprocessing included motion correction, 
temporal averaging across the 6 time frames, and spatial normalization 
via the T1-weighted image in SPM12 (final voxel size of 2 × 2 × 2 mm) 
and smoothing with a Gaussian kernel of 8 mm. Standard uptake value 
ratios (SUVR) were then calculated using whole brain gray matter as a 
reference. PET data were not corrected for partial volume effects (except 
OGI, see below). 

To assess amyloid accumulation in the ADNI 2 cohort, [18F]AV-45 
florbetapir scans were downloaded from the ADNI database (39 of 41 
subjects with available scans). Processing of florbetapir scans was done 
in accordance with [18F]FDG scans (i.e., motion correction, temporal 
averaging, spatial normalization via T1-weighted image). Amyloid sta-
tus was determined according to published procedures (Farrell et al., 
2021; Mormino, 2014). Briefly, SUVR was calculated across large 
cortical regions using the Desikan-Killiany Mindboggle atlas (Klein and 
Tourville, 2012) (frontal, cingulate, parietal, lateral temporal) with 
reference to the whole cerebellum. Previous work also recommended 
thresholds to assign amyloid positivity using Gaussian mixture modeling 
as SUVR = 1.126 (Mormino, 2014) or 1.09 (Farrell et al., 2021). 

2.7. rsfMRI preprocessing 

fMRI data were preprocessed using SPM12 as described previously 
(Hahn et al., 2020). This included correction for slice timing effects 
(reference = middle slice) and motion (quality = 1, register to mean 
option), followed by spatial normalization to MNI space via the 
T1-weighted image (final voxel size = 2 × 2 × 2 mm) and smoothing 

with a Gaussian kernel of 8 mm. 
To avoid influence of motion artifacts, motion scrubbing was applied 

(Power et al., 2015). Frame-wise displacement was calculated from the 
six realignment parameters. For rotation parameters, degrees were 
converted to millimeters as the displacement on the surface of a sphere 
with radius = 50 mm. Frames with framewise displacement > 0.5 mm 
were removed from the analysis (plus one frame back and two forward). 
Average framewise displacement in young healthy adults was 0.19 ±
0.11 mm (before removal of frames). 

To minimize the influence of potentially confounding signals, linear 
regression was applied (realignment parameters, signals from white 
matter and cerebrospinal fluid), followed by band-pass filtering. To 
enable comparison of functional connectivity between resting-state and 
task performance, cutoff frequencies were set to 0.01 < 0.15 Hz (Sun 
et al., 2004). 

For the ADNI 2 cohort, preprocessing of fMRI data was identical, 
except that the limit for removal of frames was framewise displacement 
= 1 mm. Average framewise displacement (before removal of frames) in 
the elderly cohort was 0.42 ± 0.15 mm. 

2.8. Region of interest atlas & network parcellation 

To avoid dependency of the results based on a specific brain par-
cellation, several different parcellation schemes and atlases were used 
(Suppl. Fig. S2). The Craddock atlas with 200 parcels was used (Crad-
dock et al., 2012) as it has several advantages for the employed MCM 
approach. 1) It covers the entire brain, including subcortical regions and 
the cerebellum. 2) Parcels are related to functional instead of structural 
characteristics. 3) Parcels are represented by entire volumes instead of 
discrete MNI coordinates, with relatively slight volumetric variation 
(average region size = 91.9 ± 18.8 mm3). In addition, the version with 
100 and 400 parcels was used. Furthermore, the Schaefer atlas with 200 
cortical parcels was used (Schaefer et al., 2018), and FreeSurfer regions 
were added for the subcortex and cerebellum (Fischl et al., 2002). We 
applied a previously described 7-network parcellation that was initially 
assessed on one thousand subjects (Yeo et al., 2011). This parcellation 
comprises the Visual network (VI), the Somatomotor Network (SM), the 
Dorsal Attention Network (DA), the Ventral Attention Network (VA), the 
Frontoparietal Network (FP), the Default Mode Network (DM) and the 
Limbic Network/Frontotemporal Network (FT in our data). This par-
cellation scheme was extended by the Hippocampus/Amygdala (HI), the 
Basal Ganglia (BG: Striatum & Thalamus) and the Cerebellum (CE, all 
from Harvard Oxford Atlas as provided in FSL) to also cover subcortical 
regions. 

2.9. Whole-brain MCM model 

We extended the framework of MCM from the interaction between 
two brain regions to a whole-brain approach (Fig. 1, Suppl. Fig. 1). In its 
original implementation, MCM was calculated as the spatial correlation 
between the FC pattern that one source region elicits in a target region 
with this target region’s metabolic pattern, as assessed by SUVR (Stan-
dardized Uptake Value Ratio; reference to whole brain uptake) of [18F] 
FDG PET (Riedl et al., 2016). In contrast, we aim to explain regional 
metabolic demands by all of its input signals, which are, in turn, rep-
resented by the functional connectivity of the entire brain. The herein 
employed whole-brain approach uses all non-target (k-1) brain regions 
as the functional input to the target region and spatially correlates the 
resulting FC pattern with the CMRGlu pattern as assessed by functional 
PET. For the different [18F]FDG PET outcome measures (i.e., SUVR vs. 
CMRGlu), the spatial pattern of glucose metabolism within a subject is 
the same because SUVR and CMRGlu are based on the same underlying 
[18F]FDG uptake. There is only a difference in the amplitude by scaling 
between the whole brain uptake for SUVR and the arterial input function 
(AIF) for CMRGlu (Godbersen et al., 2024). This equality of the spatial 
pattern of different metabolic metrics within a subject implies that the 
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spatial correlation with FC also yields identical results. Initially, a target 
region was selected from an atlas with k regions. FC was then computed 
between BOLD signal time courses of the target region and all of the 
remaining k-1 brain regions, followed by z-transformation. This was 
done for each voxel of the target region, yielding k-1 voxel-wise FC 
patterns of the target region. To account for the high degree of corre-
lation between the input signals of the different brain regions, principal 
component analysis (PCA) was applied to the FC patterns. This results in 
k-1 orthogonal principal components that represent linear combinations 
of FC patterns (PCFC). Next, the spatial correlation between the k-1 
orthogonal voxel-wise PCFC patterns and the voxel-wise CMRGlu pattern 
in the target region was calculated. This yields k-1 MCM r-values, which 
were then transformed to the coefficient of determination r2 as a metric 
of explained variance. Since a simple summation of all k-1 r2 values 
would reach nearly 100% explained CMRGlu for a sufficient number of 
input signals, we employed two different approaches to sum only rele-
vant or non-randomly occurring variance, respectively. First, the elbow 
criterion was used, which discards signals that do not add relevant 
explained variance (Approach a in Fig. 1). Basically, in a plot of 
decreasingly explained variance, the point with the minimum distance 
to the origin is selected. This is computationally fast and was used as a 
basis for subsequent calculations. A second, more sophisticated 
approach was employed for validation to ensure that the explained 
CMRGlu is not influenced by the estimation of the elbow point 
(Approach b in Fig. 1). Here, the k-1 voxel-wise FC patterns in the target 
were randomly permuted, subject to PCA and correlated with the 
voxel-wise CMRGlu pattern of the target region. Permutations were 
repeated j = 500 times, which resulted in (k-1)*j random MCM corre-
lation values. For each permutation, only the maximum value across all 
k-1 MCM values was selected to create a random distribution. Assigning 
the top 5% of permuted MCM values as a cutoff has strong control for 
type-I statistical errors at p < 0.05 FWE-corrected (Genovese et al., 2002; 
Holmes et al., 1996). Thus, to obtain the total amount of explained 
CMRGlu, only r2 values above the mentioned thresholds were summed 
and then assigned to the one target region. Finally, repeating the entire 
algorithm k times and each time assigning a different brain region as a 
target gives a whole-brain estimate of explained CMRGlu by FC input 
signals. 

On the other hand, we assessed the contribution of an input region’s 
FC to explain CMRGlu (Suppl. Fig. 1b). Here, for each PCFC with an r2 

value higher than random, this r2 value was first evenly divided by k-1 
input regions, then weighted by the normalized PCA coefficients and 
finally assigned back to the brain regions. This is feasible since the PCA 
coefficients represent the individual contribution of each input variable 
(in this case FC) to the PC. The explanatory capacity of a region’s FC was 
then subtracted from its explained CMRGlu to determine if a region is 
preferentially “incoming” (explained CMRGlu > explaining FC), “out-
going” (explained CMRGlu < explaining FC) or “indifferent” (explained 
CMRGlu = explaining FC). 

We want to highlight that the target region’s FC was obviously 
excluded from the above calculations, thus avoiding a simple autocor-
relation effect. 

2.10. Network optimization 

For MCM and FC data, directed and undirected connectivity matrices 
of 200×200 regions were computed, respectively. These were averaged 
across subjects and separately subject to optimization with the Louvain 
algorithm as implemented in the brain connectivity toolbox (https://site 
s.google.com/site/bctnet/home). The algorithm maximizes edges 
within a module and minimizes edges between modules, resulting in an 
optimal community structure. As the Louvain algorithm is not deter-
ministic, the structure with the maximum community statistic Q out of 
1000 runs was chosen with subsequent iterative fine-tuning as suggested 
in the brain connectivity toolbox. The two network partitions obtained 
with MCM and FC data were then compared with respect to their within- 

module weighted efficiencies (Hearne et al., 2017). For the MCM 
network partitions, the explained CMRGlu and within-module efficiency 
were subsequently computed for each condition (rest vs. task) and 
cohort (young vs. elderly). 

2.11. Gene expression 

Processing of mRNA gene expression data was carried out as 
described previously (Komorowski et al., 2022). In short, mRNA data 
from the Allen Human Brain Atlas (http://human.brain-map.org/) 
(Hawrylycz et al., 2012; Shen et al., 2012a) were interpolated, yielding 
high-resolution whole-brain maps of gene expression (log2), which are 
publicly available (http://www.meduniwien.ac.at/neuroimaging/ 
mRNA.html) (Gryglewski et al., 2018). These maps were matched 
with Entrez Gene IDs, and in this study, only neuro-related genes were 
used (Diez and Sepulcre, 2018), resulting in 3206 genes. From these 
maps, average regional values were extracted with the Craddock-200 
atlas. 

2.12. Synaptic vesicle protein 2A (SV2A) PET 

A group-average voxel-wise map of [11C]UCB-J total volume of 
distribution (VT) was kindly provided by Richard E. Carson, Yale PET 
Center, New Haven, USA. The map was created as an average of n = 30 
healthy volunteers (aged 26.2 ± 3.6 years, 14 females), and the radio-
ligand is specific for SV2A (Rossano et al., 2020; Yu, 2022). Average 
regional values for the Craddock-200 atlas were extracted and used for 
statistical analysis. 

2.13. Aerobic glycolysis 

Group-average data of the oxygen-to-glucose index (OGI) was kindly 
provided by Manu Goyal and Andrei Vlassenko, Washington University 
School of Medicine, St. Louis, USA. Data were collected from n = 30 
healthy volunteers (aged 25–45 years, 14 females). Briefly, PET data 
were acquired after administration of [18F]FDG as well as [15O]O2, 
[15O]H2O and [15O]CO. Glucose and oxygen metabolism (CMRO2) were 
estimated as SUVR with reference to the whole brain using the Schaefer 
200 atlas for cortical regions and FreeSurfer for subcortical and cere-
bellar regions, respectively. Correction for partial volume effects was 
carried out with the symmetric GTM algorithm. Relative OGI was then 
calculated by dividing CMRO2 by glucose metabolism. For further de-
tails, please see (Goyal et al., 2023). Since OGI data was averaged across 
young healthy adults without atrophy, correction for partial volume 
effects will only scale (i.e., consistently increase) the values. This is, 
however, unlikely to affect the association with explained CMRGlu, 
since a correlation is independent of the amplitude. 

2.14. Statistical analysis 

In general, statistics were calculated in Matlab using the Craddock 
atlas with k = 200 brain regions and by deriving explained CMRGlu with 
the elbow criterion unless specified otherwise. Differences in explained 
CMRGlu from the whole-brain average, between conditions (rest vs. 
task), and between groups (young vs. elderly) were computed with 
random permutations (Fig. 2). Here, m = 5000 permutations were used. 
For k = 200 regions, only the maximum and minimum values were saved 
for each permutation. Random distributions were built with these two 
extreme values, and significance was declared if observed values 
exceeded the top 2.5% of random values, yielding two-tailed control for 
type-I statistical errors with FWE correction (Genovese et al., 2002; 
Holmes et al., 1996). Similarly, this approach was used for the evalua-
tion of differences in the FC’s contribution to explain CMRGlu (Fig. 4) 
and for assigning directionality to brain regions (Fig. 5). To assess dif-
ferences in the distribution of explained CMRGlu between young and 
elderly cohorts, an F-test for equal variances was computed. 
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To evaluate associations between explained CMRGlu and mRNA 
expressions (Fig. 3), Spearman’s correlations were computed across 
brain regions, which were then subject to a gene-category enrichment 
analysis (Komorowski et al., 2022). This was realized with the GO 
knowledgebase (Ashburner and Lewis, 2002; The Gene Ontology Con-
sortium, 2019) using categories of biological processes. Gene expression 
patterns were assigned a gene score based on correlation values, and 
ensemble-based null models were calculated (Fulcher et al., 2021). 

Thus, GO categories representing a significant association with 
explained CMRGlu were identified using gene category enrichment 
analysis with a random permutation approach and adjustment for 
multiple testing with the Benjamini-Hochberg procedure. Associations 
of explained CMRGlu with [11C]UCB-J SV2A and OGI were computed 
with Pearson’s correlation across brain regions (Fig. 3). For the above 
associations with mRNA expressions, SV2A and OGI data and regional 
values were weighted by region size. This was used to avoid bias of 

Fig. 2. Explained glucose metabolism (CMRGlu) by functional connectivity (FC). Young adults at resting state showed considerable regional variation between 34.0 and 
76.1% (a and d). Higher than average values were observed, particularly in the visual, cingulate, and frontal cortices, with lower values in the cerebellum and 
subcortical areas (e). During the performance of the visuospatial cognitive task Tetris® (b, d, e), regionally-specific decreases were found particularly in the occipital 
cortex, fusiform gyrus, and posterior cingulate (f). In healthy elderly subjects, there was a marked decrease in regional variation (c, d, e), mostly driven by increases 
in subcortical areas and the cerebellum (f). Differences in e and f are corrected for multiple comparisons at p < 0.05 FWE using random permutations. Results were 
obtained with the Craddock 200 atlas. Network parcellation, VI: Visual, SM: somatomotor, DA: dorsal attention, VA: ventral attention, FT: frontotemporal, FP: 
frontoparietal, DM: default mode (as provided in (Yeo et al., 2011)), HI: hippocampus/amygdala, BG: basal ganglia/striatum, CE: cerebellum (Harvard Oxford Atlas 
as provided in FSL). 

Fig. 3. Association of explained CMRGlu with synaptic signaling. The spatial distribution of explained CMRGlu in young adults at rest (Fig. 2a and d) was correlated to 
the mRNA gene expression and significant associations were further used for gene category enrichment analysis, which yielded Gene Ontology (GO) terms mainly 
depicting synaptic and anatomical respective morphological functions (a, all corrected for multiple comparisons using random permutations). ‘Synaptic signaling’, 
’anatomical structure size’, ’cell morphogenesis’, ’dendritic spine development’ and ’axogenesis’ are the short forms or overlapping themes of the respective GO 
categories (see Suppl. Tab. S2 for details). The explained CMRGlu was positively associated with synaptic density indexed by [11C]UCB-J PET synaptic vesicular 
glycoprotein 2A (SV2A) binding (Rossano et al., 2020) (b, r = 0.49, p < 10− 4) and negatively associated with oxygen-to-glucose index (c, r=− 0.52, p < 10− 4) across 
brain regions. mRNA and SV2A results were obtained with the Craddock 200 atlas. OGI data were obtained with the Schaefer 200 atlas. 
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different region volumes and to enable comparison between different 
atlases, as the OGI data was only available for the Schaefer 200 atlas 
with FreeSurfer subcortical/cerebellar parcellation. 

Comparison of within-module weighted efficiencies between MCM 
and FC network partitions was carried out by paired t-tests (Suppl. 
Fig. S3). This was repeated after deleting regions of the MCM-based 
module 4 (see results). For the MCM-based network partitions, a com-
parison of explained CMRGlu and efficiency was done with repeated 
measures ANOVA with the module as a factor and subsequently paired t- 
tests (Fig. 6). 

Differences between the two approaches to determine explained 
CMRGlu (elbow criterion vs. random permutations) were assessed by 
Pearson correlation across brain regions (Suppl. Fig. S2). In a similar 
manner, parcellation schemes were compared, where smaller regions 
were downsampled to larger ones by calculating a weighted average of 
explained CMRGlu. 

3. Results 

All results were obtained with the Craddock 200 atlas, unless spec-
ified otherwise (see Suppl. Fig. S2 for further parcellations). 

3.1. Regionally specific associations between CMRGlu and PCFC 

First, we determined the overall ability of FC to explain CMRGlu as 
schematically shown in Fig. 1. For an atlas with k regions and any given 
target region, FC with all other brain regions was calculated, yielding (k- 
1) voxel-wise FC patterns in the target region. To account for the high 
degree of correlation between the different input signals, principal 
component analysis (PCA) was applied to these FC patterns. This results 
in k-1 PCs, which represent linear combinations of FC patterns (PCFC). 
MCM was then calculated as (k-1) spatial correlations between the 
voxel-wise CMRGlu pattern and all PCFC patterns, which were converted 
to the coefficient of determination (r2) as a metric of explained variance. 
Only those values exhibiting relevant r2 (estimated by elbow criterion or 
random permutations) were summed and assigned to the target region. 

At rest, the explained variance of CMRGlu by FC was highly het-
erogeneous across brain regions (Fig. 2a, d and e). The highest values 
were observed in cortical regions with peak values of up to 76.1 ±
13.3% (mean±sd across subjects) in the visual network and the lowest in 
subcortical areas and the cerebellum (34.0 ± 16.5%). Compared to the 
global mean of 56.9% at resting state, significant increases were 
observed in the visual, cingulate, and frontal cortices. In contrast, de-
creases occurred in the subcortical areas and cerebellum (Fig. 2e). This 
regional variation is non-trivial from a computational point of view 
since for any two brain regions, k-2 input signals (e.g., 99% of input 
signals for an atlas with k = 200 regions) are identical. The pattern of 
explained variance was robust against different parcellation schemes, 
the number of brain regions, and the approach to account for randomly 
explained variance (Suppl. Fig. S2). 

We then investigated alterations in the explained CMRGlu induced 
by cognitive performance and in healthy aging (all p < 0.05 FWE cor-
rected). During task execution, specific decreases as low as − 17% were 
found in the occipital cortex, fusiform gyrus, anterior and posterior 
cingulate cortices (Fig 2b, d, e and f). In contrast, healthy elderly sub-
jects showed a de-differentiation in the explained CMRGlu across brain 
networks (variance test p < 0.05, Fig. 2c and d). This was driven by 
increases in the cerebellum and subcortical regions of up to 26% but 
decreases of 23% in medial and dorsolateral prefrontal areas compared 
to young adults (Fig. 2f). 

To rule out that effects in the elderly cohort were driven by amyloid 
accumulation, [18F]AV-45 amyloid scans were obtained from the ADNI 
database. Average SUVR was 1.03 ± 0.20, with 11 subjects being am-
yloid positive, regardless of the threshold (Farrell et al., 2021; Mormino, 
2014). There was no significant difference in explained CMRGlu be-
tween amyloid positive and negative subjects (p = 0.47). 

3.2. Explained CMRGlu relates to synaptic processing and aerobic 
glycolysis 

Next, we aimed to identify the neurophysiological underpinnings of 
the association between FC and CMRGlu. The regional distribution of 
explained CMRGlu (Fig 2a and d) was related to that of mRNA expres-
sions of 3206 neuro-related genes (Diez and Sepulcre, 2018). This 
revealed associations particularly with genes involved in synaptic 
signaling and transmission-associated processes (Fig. 3a, Table S2, all p 
< 0.05 corrected). In line, the explained CMRGlu was also correlated 
with synaptic vesicle glycoprotein 2A binding as derived from [11C] 
UCB-J PET imaging (Rossano et al., 2020) (r = 0.49, p < 10− 4, Fig. 3b). 
Finally, we observed a negative association with the OGI (Goyal et al., 
2023) (low OGI reflects high AG, r=− 0.52, p < 10− 4, Schaefer 200 
atlas). Together, these findings indicate that the ability of FC to explain 
CMRGlu is linked to the underlying synaptic connections and signaling 
processes, which is in line with the main assumption of MCM that 
metabolic demands are predominantly driven by postsynaptic signaling. 
Further, these signaling processes seem to be at least partly fueled by 
aerobic glycolysis. 

3.3. Distinct contributions of functional connectivity 

We also evaluated the explanatory capacity of each brain region’s FC 
by assigning r2-values to input regions (instead of computing the 
maximum amount of explained CMRGlu by summing up r2 in target 
regions as above). This was realized by distributing the non-random r2- 
values across all input brain regions after weighting them according to 
their individual contributions, as given by the PCA coefficients. The 
approach enabled us to investigate the contributions of FC to explain 
CMRGlu between networks (Fig. 4). Overall, the analysis revealed 
higher within- than between-network contributions, independent of the 
condition (rest and task, main effect p < 10− 4) and cohort (young and 
elderly, p < 10− 4), showing that FC within a network explains more 
CMRGlu than FC of other networks (Fig. 4a, d-e). Compared to resting 
state, task execution exclusively elicited decreases in the FC’s contri-
bution (Fig. 4b). This was more pronounced for within- than between- 
network associations (interaction p < 10− 4, Fig. 4d), indicating a 
decreased segregation of networks during cognitive performance. The 
observation is also supported by the correlation of within vs. between 
network associations with task scoring, where subjects with less segre-
gation performed better (r=− 0.46, p < 0.001, Fig. 4f). In contrast, 
elderly subjects showed increased associations, particularly for those 
networks with low values of explained CMRGlu and decreased associa-
tions within networks (Fig. 4c and e). 

In a second step, we calculated the relationship between how much 
CMRGlu is explained in a region vs. how much a region explains by its 
FC. We designated regions as “incoming” if its explained CMRGlu is 
higher than its explained FC, as “outgoing” if vice versa, and as “indif-
ferent” if the difference was not significant (p < 0.05 FWE corrected). At 
resting-state hippocampal and basal ganglia networks were preferen-
tially incoming (Fig. 5a), which was, however, inverted during task 
performance (Fig. 5b). In line with the low amount of explained 
CMRGlu, the cerebellum comprised mostly outgoing regions for both 
conditions. In elderly subjects, the majority of brain regions showed 
indifferent behavior, except for the hippocampal network being pref-
erentially outgoing (Fig. 5c). The ventral attention network was stable 
incoming across conditions and cohorts. 

3.4. CMRGlu refines brain network organization 

Finally, we assessed whether the incorporation of CMRGlu allows a 
refined definition of functional brain networks. Average whole-brain 
connectivity matrices of resting-state FC and explained CMRGlu using 
MCM were separately optimized by maximizing within module edges 
and minimizing between module edges (Louvain algorithm). This 
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resulted in two network definitions comprising 4 and 3 modules for 
MCM- and FC-based partitions, respectively (Fig. 6a, Suppl. Fig. S3a-b). 
As expected, for individual MCM data, the corresponding MCM-based 
module definition exhibited higher within-module efficiency than FC- 
based partitioning (Suppl. Fig. S3c, p < 10− 4). Crucially, even for FC 
data, the MCM-based module definition yielded higher efficiency 
(Suppl. Fig. S3d, p < 10− 4). Aiming to identify this difference’s source, 
we simulated the elimination of all regions of module 4 as obtained from 
the MCM-based definition (see rationale below). This increased the ef-
ficiency of FC-based partitioning to the same level as MCM-based defi-
nition for both MCM and FC data (Suppl. Fig. S3c-d, both p > 0.3). Thus, 
differences in efficiency were indeed driven by module 4, which was, 
however, only achieved through consideration of CMRGlu in the 
computations. 

Topologically characterizing the MCM-based partitions (Fig. 6a) 
showed that module 1 comprised visual and posterior dorsal attention 
networks, whereas module 2 included somatomotor as well as ventral 
and dorsal attention networks. Module 3 mostly comprised the fronto-
parietal and default mode networks, which are considered to be antag-
onistic (Buckner and DiNicola, 2019; Murphy and Fox, 2017). Module 4 
largely summarized brain networks with the lowest values of explained 
CMRGlu, i.e., subcortical regions, the cerebellum, and the fronto-
temporal network (Fig. 6b, rmANOVA p < 10− 4). This separation of 
module 4 was also observed during task performance (Fig. 6c, rmA-
NOVA p < 10− 4). However, in healthy elderly subjects, module 3, 
comprising default mode and frontoparietal networks, showed the 
lowest explained CMRGlu (Fig. 6d, rmANOVA p < 10− 4). A similar effect 
was obtained when investigating the within-module efficiency, with 
module 3 in healthy elderly exhibiting the lowest values (Fig. 6g, 

rmANOVA p < 10− 4), which was, however, not the case for young adults 
at rest (Fig. 6e) or during task execution (Fig. 6f). 

4. Discussion 

Based on the physiological relationships between signaling and en-
ergy demands, we modeled whole-brain functional connectivity as input 
signals to explain postsynaptic glucose metabolism. This provides a 
global perspective on how remote brain networks shape local energy 
demands. 

4.1. CMRGlu-PCFC relation reflects non-oxidative metabolic demands of 
signaling input 

Our approach revealed substantial regional variation in this associ-
ation ranging from 34% in the cerebellum to 76% in the visual cortex. 
Interestingly, these regional differences were associated with the pat-
terns of non-oxidative energy metabolism, i.e., the oxygen-to-glucose 
index (OGI), depicting aerobic glycolysis (AG). AG represents almost 
25% of glucose consumption in the resting human prefrontal cortex and 
only 2% in the cerebellum (Vaishnavi et al., 2010). Although AG is an 
ATP-inefficient way of energy supply, it has been shown to occur 
abundantly in glutamatergic and GABA-ergic neurons, astrocytes 
(Dienel, 2019) as well as during synaptic transmission (Yu et al., 2018), 
synaptic remodeling and learning (Shannon et al., 2016). 

Most recently, a tight coupling of the BOLD signal with AG has been 
proposed (Theriault et al., 2021) (but see other examples that showed 
dissociations between the BOLD signal and metabolism (DiNuzzo et al., 
2022; Koush et al., 2021; Stiernman et al., 2021)). Thereby, BOLD 

Fig. 4. Within- and between network differences in explained CMRGlu. Matrices show pairwise contributions of FC (source, rows) to explain CMRGlu (target, columns) 
between networks (a-c). Overall, FC within a network explained more CMRGlu than FC between networks independent of condition (rest and task, d: main effect p <
10− 4) and cohort (young and elderly, e: p < 10− 4). Task performance resulted in decreased values of explained CMRGlu, particularly for within-network effects (b, d: 
interaction p < 10− 4). The difference within-between network contributions also correlated with task performance (f: r=− 0.47, p < 0.001). Elderly subjects showed 
increased associations, particularly for networks with low values of explained CMRGlu and increases within networks (c). Asterisks in b and c indicate significant 
decreases (black) or increases (red) compared to a. Results were obtained with the Craddock 200 atlas. Network parcellation, VI: Visual, SM: somatomotor, DA: dorsal 
attention, VA: ventral attention, FT: frontotemporal, FP: frontoparietal, DM: default mode (as provided in (Yeo et al., 2011)), HI: hippocampus/amygdala, BG: basal 
ganglia/striatum, CE: cerebellum (Harvard Oxford Atlas as provided in FSL). 
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signals reflect interregional error signaling, supported by fast-spiking 
parvalbumin-positive interneurons (FSP+) (Buzsáki and Wang, 2012), 
which mainly rely on non-oxidative metabolism since their thin axons 
do not provide sufficient space for mitochondria (Theriault et al., 2021). 
From this perspective, the BOLD signal reflects rapid non-oxidative 
metabolic fluctuations of FSP+-synchronized neuronal signaling 
(Theriault et al., 2021). Given the closely matching patterns of PCFC 
explaining CMRGlu and AG, we follow Theriault et al. in the assumption 
that FC represents mainly interregional on-demand processing fueled by 
AG. This is also in line with the BOLD signal being responsible for about 
5% of the changes in net ATP production (Raichle, 2010). As our model 
builds on overall linear combinations of FC input and correlates with the 
regional pattern of AG, it seems to explain a minor yet critical proportion 
of overall metabolic turnover (Vaishnavi et al., 2010), whereas the 
metabolic baseload is covered by energy-efficient but slow oxidative 
phosphorylation (Theriault et al., 2021). 

In addition, different ratios of excitatory (AMPA, M1) to inhibitory 
(GABA-A, M2) receptor density across the brain relate to functional 
connectivity (Rajkumar et al., 2021; van den Heuvel et al., 2016). In the 
cerebellum, about 70% of energy metabolism relates to excitatory 
neurons (Howarth et al., 2012, 2010), whereas GABA-A density 
(Nørgaard et al., 2021) and inhibitory neurons are low (Howarth et al., 
2012). Again, the cerebellum showed the least explained CMRGlu and 
low AG (Vaishnavi et al., 2010). Hence, we speculate that regional dif-
ferences in postsynaptic energy demand explained by PCFC emerge from 
a different proportion of AG in overall metabolism due to different 
densities of FSP+ interneurons which, in turn, receive excitatory FC 
input by remote functional projections. This excitatory input to FSP+ is 
in line with the intimate relationship between postsynaptic AMPA re-
ceptors and energy demands (Harris et al., 2012) and the expression of 
these receptors on FSP+ (Homayoun and Moghaddam, 2007; Kooijmans 
et al., 2014). The interpretation that FC input relates to synaptic 

signaling is also supported by imaging transcriptomics (Diez and 
Sepulcre, 2018; Martins et al., 2021), where genes primarily involved in 
synaptic signaling were related to the explained CMRGlu (Chen et al., 
2021; Goyal et al., 2014). Furthermore, an association was observed 
with the regional distribution of SV2A, a marker for synaptic density 
(Carson et al., 2022; Finnema et al., 2016), which also correlates with 
regional variation of [18F]FDG metabolism (Chen et al., 2021; Yu, 
2022), AG (van Aalst et al., 2021) and excitatory synaptic signaling 
obtained from 1H-MRS glutamate imaging (Onwordi et al., 2021). 
Together, these findings suggest that CMRGlu explained via PCFC input 
reflects the metabolic cost of incoming excitatory synaptic signals, i.e., 
functional input via glutamatergic neurons. The close link between 
glutamate release, neurovascular coupling (Attwell et al., 2010; Mishra 
et al., 2016) and neuronal (Lundgaard et al., 2015) as well as astrocytic 
(Zimmer et al., 2017) glucose uptake (Harris et al., 2012; Magistretti and 
Allaman, 2015; Raichle and Mintun, 2006), further supports this inter-
pretation (Klug et al., 2022). 

4.2. Signaling input shapes explained metabolism during task 
performance and in healthy aging 

Independent of task condition and age, the metabolic cost of a 
network was mainly defined by its own FC instead of functional inputs 
from other networks. This corresponds to the segregated brain organi-
zation at rest, representing a metabolically optimized state (Raichle, 
2015) to enable flexible network reconfiguration when engaged in 
cognitive tasks (Hearne et al., 2017; Wig, 2017). In line, we observed a 
shift to a more integrated network structure (i.e., desegregation) during 
cognitive task performance (Cohen et al., 2014; Cohen and D’Esposito, 
2016; Cole et al., 2014; Krienen et al., 2014; Mattar et al., 2015; Shine 
et al., 2016; Spadone et al., 2015; Westphal et al., 2017), specifically in 
regions involved in the execution of the Tetris® task (Agren et al., 2021; 

Fig. 5. Relationship between a brain network’s explained CMRGlu by remote FC vs. the ability of the network’s FC to explain remote CMRGlu. a-c) Regions of a network were 
designated as "incoming" if the normalized explained CMRGlu is higher than the normalized explaining FC (positive values) or as "outgoing" if vice versa (negative 
values), expressed as a percentage of the spatial extent of a given network. The remaining amount to match 100% were regions without significant differences 
between the two parameters ("indifferent"). Colors match those of boxplots in Figure 2; see Figure 2 for abbreviations. d) Visualization of the brain regions with 
significantly higher than average explained CMRGlu (incoming) or higher than average explaining FC (outgoing). f) Visualization of the brain regions with significant 
differences to young adults at resting state. All values are corrected at p < 0.05 FWE using random permutations; differences in d and e are given in arbitrary units. 
Results were obtained with the Craddock 200 atlas. Network parcellation, VI: Visual, SM: somatomotor, DA: dorsal attention, VA: ventral attention, FT: fronto-
temporal, FP: frontoparietal, DM: default mode (as provided in (Yeo et al., 2011)), HI: hippocampus/amygdala, BG: basal ganglia/striatum, CE: cerebellum (Harvard 
Oxford Atlas as provided in FSL). 
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Hahn et al., 2020) such as visual processing and attention (Sheth and 
Young, 2016). This emerged from a stronger decrease of input from 
within than between-network connections. Better task performance was 
also correlated with relatively higher integration of networks in this and 
previous studies (Cohen and D’Esposito, 2016; Gratton et al., 2016; 
Schultz and Cole, 2016; Shine et al., 2016; Westphal et al., 2017). 
Following the above interpretations on a neuronal level, FSP+ in-
terneurons have been shown to increase their firing rate during action 
execution (Gage et al., 2010) and to enable between-network in-
teractions through initiating coordinated oscillations across networks 
(Roux and Buzsáki, 2015), which crucially contributes to task perfor-
mance during early learning (Lee et al., 2017). Hence, we speculate that 
FSP+ interneurons enable the fast reorganization of between-network 
interactions during task performance, leading to increased integration. 
We suppose that this modulation of network interaction reflects 

cognitive flexibility, as signified by rapid on/off peaks of brain activity 
(and metabolism via AG) (Theriault et al., 2021), representing an 
essential capacity for the execution of cognitive tasks. 

In contrast to young adults, elderly individuals showed a high sim-
ilarity of explained CMRGlu across brain networks, i.e., dedifferentia-
tion. Healthy human aging has been associated with region-specific 
changes in glucose metabolism (Deery et al., 2023a; Shen et al., 2012b) 
and desegregation of brain networks (Deery et al., 2023b; Geerligs et al., 
2015). Dedifferentiation with aging was also observed for 
metabolically-defined networks (termed “metabolic homogeneity”) 
(Arnemann et al., 2017) and BOLD variability, which has been linked to 
cognitive decline (Garrett et al., 2011) and associated with deficits in 
dynamically exploring functional brain states (Deco et al., 2011). 
Accordingly, the decreased segregation in elderly subjects might indi-
cate an impaired network reconfiguration and reduced cognitive 

Fig. 6. CMRGlu enables refined network partitioning. Optimization of average MCM-based whole-brain connectivity matrices resulted in a 4-module solution (a). For 
young participants at rest (b) and during task performance (c), module 4 summarized networks with the lowest explained CMRGlu (rmANOVA both p < 10− 4). 
However, in elderly individuals, module 3 showed the lowest values for explained CMRGlu (d, rmANOVA p < 10− 4) and efficiency (g, rmANOVA p < 10− 4). Colors 
and abbreviations match those of boxplots in Figure 2. Results were obtained with the Craddock 200 atlas. VI: Visual, SM: somatomotor, DA: dorsal attention, VA: 
ventral attention, FT: frontotemporal, FP: frontoparietal, DM: default mode (as provided in (Yeo et al., 2011)), HI: hippocampus/amygdala, BG: basal ganglia/s-
triatum, CE: cerebellum (Harvard Oxford Atlas as provided in FSL). 
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flexibility (Goyal et al., 2017). Even though regions with pronounced AG 
have been shown to exhibit increased amyloid deposition (Vlassenko 
et al., 2010), our analysis did not indicate differences in explained 
CMRGlu between amyloid positive and negative elderly subjects. Given 
the above association of explained CMRGlu with AG and a flattened AG 
pattern in the elderly (Goyal et al., 2017), we interpret this result as 
dedifferentiation of non-oxidative metabolism, possibly explaining 
reduced cognitive flexibility. Considering the independence of this 
flattened AG pattern from the amyloid status of elderly subjects marks it 
as a more general feature of aging. As indicated above, a high amount of 
explained CMRGlu potentially reflects high synaptic signaling input to 
FSP+ fueled by AG. Thus, vulnerable cortical regions with distinctly 
decreased AG (Goyal et al., 2014) may experience pronounced loss of 
FSP+ (Theriault et al., 2021), resulting in reduced inhibition of excit-
atory pyramidal neurons. This is in line with recent propositions for 
hypersynchrony in brain networks of AD patients due to FSP+
dysfunction (Palop and Mucke, 2016). Furthermore, AG-vulnerable 
areas exhibit higher-order cognitive control (Blazey et al., 2019), 
which may subsequently elicit increased firing via (disinhibited) excit-
atory projections to subcortical and cerebellar regions with relatively 
stable amounts of AG. This increased higher-order signaling aligns with 
the hypothesis for a shift in functional connectivity to compensate for 
reduced flexibility in the aging brain (Davis et al., 2008; Deery et al., 
2023b; Spreng and Turner, 2019). 

4.3. Characterizing brain networks by their dynamic energy demands 

In the following, we apply our interpretation of whole-brain FC input 
as the primary driver of non-oxidative postsynaptic metabolism to 
characterize the interrelation of brain networks. Thereby, we extend 
prevailing approaches, which rely on FC (Yeo et al., 2011) or CMRGlu 
alone (Arnemann et al., 2017). 

Incorporating metabolic information into connectivity provides 
complementary information to previous work (Avena-Koenigsberger 
et al., 2019; Ito et al., 2017), where functional and structural metrics 
defined networks as preferentially sending or receiving information 
(Seguin et al., 2019). Interestingly, the direction of our metabolically 
defined directionality runs opposite to the previous one (Seguin et al., 
2019) and a connectivity gradient from primary sensory and motor re-
gions to the default mode network (Margulies et al., 2016). Following a 
predictive processing interpretation of this gradient (Katsumi et al., 
2022), it seems that metabolically defined “incoming” and “outgoing” 
signals essentially characterize top-down predictions, which run oppo-
site to the main direction of connectivity (Seguin et al., 2019) and may 
reflect a crucial proportion of directed connections that enable network 
interactions. This is based on the abovementioned interpretations, 
where BOLD FC input fueled by AG through FSP+ may essentially 
represent predictive processing (Theriault et al., 2021). Indeed, FSP+
are considerably involved in prediction error circuits (Hertäg and Clo-
path, 2022; Hertäg and Sprekeler, 2020; Yau et al., 2021). Thereby, 
excitatory signals from higher-order brain regions to FSP+ of 
lower-order regions have been interpreted as signals that update pre-
diction errors (Barron et al., 2020). 

Interestingly, these directed prediction signals changed during task 
execution. For instance, the output of FP and DA substantially 
decreased, which might be explained by an increased error signaling 
during the task, leading to a perturbation of outgoing predictions. The 
reduced prediction output of DA is in line with former results showing 
increased feedforward processing (i.e., prediction error signaling) from 
the occipital cortex to DA (Hahn et al., 2020). 

In accordance with altered predictive processing in the aging brain 
(Chan et al., 2021; Hsu et al., 2021), elderly subjects showed an overall 
flattening of interregional predictions. These were primarily driven by 
decreased outputs of CER, FP, and DA, as well as decreased inputs to BG 
and SM. In line, aging was associated with reduced interactions between 
the cerebellum, basal ganglia, and cortical regions (Brown et al., 2022). 

This has been linked (Brown et al., 2022) to the default–executive 
coupling hypothesis of aging (Turner and Spreng, 2015), which might 
explain the observed shift to DM output in elderly HC. Thereby, re-
ductions of CER-BG-cortical interactions have been associated with 
reduced updating of cortical routines (Brown et al., 2022), while 
increased executive-DM synchrony was linked to increased retrieval of 
already proven predictions in elderly (Brown et al., 2022). 

Finally, investigating the impact of metabolic demands on the for-
mation of brain networks, we identified that regions with the lowest 
explained CMRGlu proved responsible for suboptimal efficiency in FC- 
based network definitions. As efficiency again increased upon the 
elimination of these regions, our findings indicate that brain metabolism 
carries unique information for optimized large-scale network parti-
tioning. Given the association of FC explaining CMRGlu with synaptic 
density and signaling processes, we assume that this network optimi-
zation was primarily driven by the corresponding synaptic signaling 
input. Previous network refinement has demonstrated that regions may 
indeed contribute to multiple networks (Bijsterbosch et al., 2019; Yeo 
et al., 2016). Interestingly, the topography of our MCM-based module 
partitions closely resembles a former optimization of network organi-
zation (Cookson and D’Esposito, 2022). This included an overlap of DM 
and FP, which are usually thought to operate antagonistically (Buckner 
and DiNicola, 2019; Murphy and Fox, 2017), as well as the fusion of SM, 
VA, and anterior DA. In addition, the observed DMN split is in line with 
formerly identified subsystems of core, medial temporal and dorsal 
medial subsystems (Smallwood et al., 2021). Moreover, the combination 
of VI and posterior DA aligns with previous work, which showed better 
task performance for subjects with increased resting state functional 
connectivity between task-positive regions (Baldassarre et al., 2012). 

Interestingly, these new partitions also showed age-related changes. 
Within-module efficiency increased for module 1 (i.e., VI and DA) but 
decreased for module 3 (DM and FP). This is in line with observations of 
decreased DM and FP connectivity as well as increased connectivity 
within primary information processing networks (e.g., SM and VI) of 
elderly subjects (Geerligs et al., 2015; Jockwitz et al., 2017). Interest-
ingly, according to our results, these network-specific alterations do not 
seem to necessarily reflect the distinct accumulation of Abeta (Palmqvist 
et al., 2017) and tau proteins (Leuzy et al., 2022), but rather indicate 
more general aging-related changes. 

5. Conclusion & limitations 

In sum, we revealed substantial regional variations of explained 
CMRGlu by whole-brain BOLD FC input. The closely matching pattern of 
AG, synaptic density and signaling-related mRNA suggests that our 
model reflects interregional on-demand synaptic signaling fueled by 
anaerobic metabolism. However, mRNA maps were based on postmor-
tem data from the Allen Human Brain Atlas, which might limit their 
applicability to individual neuroimaging data. Their limitation to neuro- 
related genes leaves aside other contributors to synaptic activity such as 
astrocytes. In addition, [11C]UCB-J binds at presynaptic SV2A, and thus 
represents an estimate of general synaptic density. We further 
acknowledge that causal relationships between the observed findings 
from human brain imaging and the assumed physiological un-
derpinnings of FSP+ to explain regional differences of modeled CMRGlu 
still need to be established. Our approach proved useful in further 
characterization of brain networks, which are usually metabolically 
underspecified. Future studies should investigate if the observed 
network optimization reveals formerly hidden networks and if a pre-
dictive processing account of the modeled input signals proves valid. 

Concerning the aging brain, it needs to be acknowledged that data 
from the ADNI 2 cohort were acquired differently. This includes 
acquisition of rsfMRI and [18F]FDG PET data sequentially and on 
different scanning days, with different acquisition parameters and 
without full quantification of CMRGlu. However, at least the latter 
aspect should not substantially affect the outcome of our study, since 
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MCM only uses the spatial pattern of the glucose metabolism (Godbersen 
et al., 2024). Future investigations should therefore apply homogenous 
acquisitions of simultaneous PET/MRI to optimize comparability across 
cohorts. Furthermore, even though the elderly cohort consisted of 
healthy subjects with mild atrophy, the reduction in brain volume might 
lead to an overestimated decrease in [18F]FDG uptake when no PVC is 
applied (Greve et al., 2016). Still, the pronounced dedifferentiation of 
the explained metabolism indicates an altered interplay between func-
tional interactions and energy demands in the aging brain, which might 
also prove fruitful for investigating psychiatric and neurodegenerative 
diseases. The interpretation of a regionally varying loss of FSP+ pro-
vides a testable hypothesis and a potential approach to assess thera-
peutic interventions to decelerate cognitive decline in pathological 
conditions that involve reduced cognitive flexibility like Alzheimer’s 
disease, schizophrenia, or depression. 
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Buzsáki, G., Wang, X.-J., 2012. Mechanisms of gamma oscillations. Annu Rev. Neurosci. 
35, 203–225. https://doi.org/10.1146/annurev-neuro-062111-150444. 

Carson, R.E., Naganawa, M., Toyonaga, T., Koohsari, S., Yang, Y., Chen, M.-K., 
Matuskey, D., Finnema, S.J., 2022. Imaging of synaptic density in neurodegenerative 
disorders. J. Nucl. Med. 63, 60S–67S. https://doi.org/10.2967/jnumed.121.263201. 

Chan, J.S., Wibral, M., Stawowsky, C., Brandl, M., Helbling, S., Naumer, M.J., Kaiser, J., 
Wollstadt, P., 2021. Predictive coding over the lifespan: increased reliance on 
perceptual priors in older adults—a magnetoencephalography and dynamic causal 
modeling study. Front. Aging Neurosci. 13. 

Chen, Y., Lin, Q., Liao, X., Zhou, C., He, Y., 2021. Association of aerobic glycolysis with 
the structural connectome reveals a benefit–risk balancing mechanism in the human 
brain. PNAS 118. https://doi.org/10.1073/pnas.2013232118. 

Cohen, J.R., D’Esposito, M., 2016. The segregation and integration of distinct brain 
networks and their relationship to cognition. J. Neurosci. 36, 12083–12094. https:// 
doi.org/10.1523/JNEUROSCI.2965-15.2016. 

Cohen, J.R., Gallen, C.L., Jacobs, E.G., Lee, T.G., D’Esposito, M., 2014. Quantifying the 
reconfiguration of intrinsic networks during working memory. PLoS One 9, e106636. 
https://doi.org/10.1371/journal.pone.0106636. 

Cole, M.W., Bassett, D.S., Power, J.D., Braver, T.S., Petersen, S.E., 2014. Intrinsic and 
task-evoked network architectures of the human brain. Neuron 83, 238–251. 
https://doi.org/10.1016/j.neuron.2014.05.014. 

Cookson, S.L., D’Esposito, M., 2022. Evaluating the reliability, validity, and utility of 
overlapping networks: implications for network theories of cognition. Hum. Brain 
Mapp. hbm 26134. https://doi.org/10.1002/hbm.26134. 

Craddock, R.C., James, G.A., Holtzheimer, P.E., Hu, X.P., Mayberg, H.S., 2012. A whole 
brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain 
Mapp. 33, 1914–1928. https://doi.org/10.1002/hbm.21333. 

Davis, S.W., Dennis, N.A., Daselaar, S.M., Fleck, M.S., Cabeza, R., 2008. Qué PASA? The 
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